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A B S T R A C T

Background and objective: This paper presents an automatic computer-aided diagnosis (CAD)

system based on feature ranking for detection of Alzheimer’s disease (AD) using structural

magnetic resonance imaging (sMRI) data.

Methods: The proposed CAD system is composed of four systematic stages. First, global and

local differences in the gray matter (GM) of AD patients compared to the GM of healthy con-

trols (HCs) are analyzed using a voxel-based morphometry technique. The aim is to identify

significant local differences in the volume of GM as volumes of interests (VOIs). Second, the

voxel intensity values of the VOIs are extracted as raw features. Third, the raw features are

ranked using a seven-feature ranking method, namely, statistical dependency (SD), mutual

information (MI), information gain (IG), Pearson’s correlation coefficient (PCC), t-test score

(TS), Fisher’s criterion (FC), and the Gini index (GI). The features with higher scores are more

discriminative. To determine the number of top features, the estimated classification error

based on training set made up of the AD and HC groups is calculated, with the vector size

that minimized this error selected as the top discriminative feature. Fourth, the classifica-

tion is performed using a support vector machine (SVM). In addition, a data fusion approach

among feature ranking methods is introduced to improve the classification performance.

Results: The proposed method is evaluated using a data-set from ADNI (130 AD and 130 HC)

with 10-fold cross-validation. The classification accuracy of the proposed automatic system

for the diagnosis of AD is up to 92.48% using the sMRI data.

Conclusions: An automatic CAD system for the classification of AD based on feature-

ranking method and classification errors is proposed. In this regard, seven-feature ranking

methods (i.e., SD, MI, IG, PCC, TS, FC, and GI) are evaluated. The optimal size of top dis-

criminative features is determined by the classification error estimation in the training phase.

The experimental results indicate that the performance of the proposed system is com-

parative to that of state-of-the-art classification models.
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1. Introduction

Alzheimer’s disease (AD), a progressive irreversible
neurodegenerative disorder, occurs most frequently in older
adults and gradually destroys regions of the brain that are re-
sponsible for memory, thinking, learning, and behavior [1]. It
is estimated that 5.3 million Americans of all ages suffer from
AD in 2015 [2]. Among the top 10 causes of death among Ameri-
cans, AD is the only disease that cannot be cured, prevented,
or slowed [2]. Although there is no cure for AD, early detec-
tion may shed light on AD mechanisms and improve the
responses of AD patients to drug therapy and their quality of
life. In recent years, the analysis of neuroimaging data, such
as structural magnetic resonance imaging (sMRI) [3–12], func-
tional MRI [13–15], and diffusion tensor imaging [16–18], in
addition to positron emission tomography (PET) and single
photon emission computed tomography (SPECT) [19–24], has
attracted much interest, with recent improvements in accu-
rate detection of AD. In this paper, we focus only on the use
of sMRI data in the classification of AD. Recently, sMRI brain
data have been widely used to design computer-aided diag-
nosis (CAD) systems for the classification of AD [4,9,25,26],
because of the noninvasiveness, excellent spatial resolution,
and good tissue contrast of sMRI, in addition to the absence
of radioactive pharmaceutical injection, as occurs with PET and
SPECT [19–22]. Many researchers studied advanced pattern
analysis and classification approaches for extracting complex
spatial patterns of brain structure [14,27–30]. This paper de-
scribes the application of an automatic CAD system, which uses
statistical feature-ranking methods as part of a novel feature-
selection process, followed by estimation of the classification
error in AD and healthy control (HC) groups to determine the
optimum number of highest-ranking features to be selected.
In the training set, resubstitution and cross-validation error es-
timators were used as classification errors to measure the
quality of a classifier. We used these classification error metrics
as stopping criteria among the ranked features to estimate the
optimal number of features with the most discriminative in-
formation in the classification process. We evaluated seven
feature-ranking methods, namely, statistical dependency (SD),
mutual information (MI), information gain(IG), Pearson’s cor-
relation coefficient (PCC), the t-test score (TS), Fisher’s criterion
(FC), and the Gini index (GI) in the proposed CAD system. In
the proposed approach, high-dimensional feature space was
reduced into lower dimensional space by employing the mini-
mized classification error as the dimensionality selection
criterion in an iterative process of incrementing the number
of ranked features.The proposed feature-selection method was
applied to gray matter (GM) atrophy clusters of voxels, which
corresponded to the volume of interests (VOIs) of the sMRI data
obtained through the voxel-based morphometry (VBM) analy-
sis during preprocessing. VBM is an advanced method used to
assess the whole-brain structure using voxel-by-voxel com-
parisons [8,31–36]. It is one of the best methods for feature
extraction from sMRI in AD [9]. In the proposed system, we used
only sMRI data. The proposed CAD system was applied in four
stages in a systematic manner. In the first stage, the VBM tech-
nique was employed, in addition to diffeomorphic anatomical
registration using the exponentiated Lie algebra (DARTEL) [33].

This approach was used to analyze group-wise comparisons
between cross-sectional structural MRI scans to detect the MRI
voxels that were best discriminated between the AD group
versus HCs [8,31–33]. Based on the VBM and DARTEL ap-
proach on a global brain scale, and regional structural GM
alterations, regions with significant atrophy of GM were in-
vestigated and specified in the patients who suffer from AD.
In the second stage, specified VOIs were used as 3D masks for
extracting voxel intensity values from GM atrophy regions to
generate raw feature vectors. These feature vectors were sub-
jected to further data-selection processes before they were used
by the classifier. In the third stage, the extracted features were
ranked based on the statistical scores (i.e., SD, MI, IG, PCC, TS,
FC, and GI) of the AD and HC groups in the training set. The
ranking scores can be considered an indicator of the level of
separation/discrimination between the AD and HC groups in
the training set. Feature ranking has been used successfully
in a number of pattern-recognition studies [37–42]. In addi-
tion, an automatic approach based on classification error
estimation was used to determine the number of top fea-
tures using the AD and HC groups in the training set. This
approach adaptively determines the optimum number of top
features and identifies a discriminative subset of high-
performance features based on the training data in each fold
instead of using a fixed number of features. In the fourth stage,
the performance of the proposed feature-selection technique
was evaluated using a support vector machine (SVM) classi-
fier. In this work, the SVM classifier with a linear kernel was
trained to discriminate between the classes. In addition, instead
of using a single feature ranking method, the results of mul-
tiple individual feature ranking methods were combined
through the proposed data fusion technique for improved clas-
sification performance.

In summary, the aim of this study was to design an auto-
matic CAD system based on statistical feature ranking and
classification errors as part of a novel feature-selection method.
The proposed system utilizes feature ranking based on sta-
tistical scores, followed by the determination of resubstitution
and cross-validation error estimators to identify the number
of ranked features that minimizes the error in the training set.
This process helps to identify a selected discriminative subset
of high-performance features into a lower-dimensional feature
vector space representing sMRI images. In addition, a data
fusion technique was proposed to improve the AD classifica-
tion performance among different feature ranking methods.
The performance of the proposed system was assessed using
a data set from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) containing 260 subjects (130 AD patients and 130
HCs) using 10-fold cross-validation. The experimental results
showed that the accuracy (ACC) (92.48%), sensitivity (SEN)
(91.07%), specificity (SPE) (93.89%), and area under the curve
(AUC) (0.963) of the proposed system were well compara-
tively to results obtained with state-of-the-art techniques in
terms of AD classification.

The rest of the paper is organized as follows: Section 2 details
the statistical data in the study. Section 3 describes the pro-
posed methodology to design an automatic CAD system based
on feature ranking and classification error. Section 4 pres-
ents the experimental results, discussion, and analysis of the
proposed system. Finally, Section 5 presents the conclusions.
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2. Materials

2.1. MRI acquisition

The MR images and data used in this study were obtained from
the ADNI database.1 All the participants initially underwent a
number of neuropsychological examinations, resulting in several
clinical characteristic indicators, including the Mini Mental State
Examination (MMSE) score and Clinical Dementia Ratio (CDR)
score. The MRI scans were acquired using 3 Tesla, T1-weighted
by Siemens scanner with Acquisition Plane = SAGITTAL, Ac-
quisition Type = 3D, Coil = PA, Flip Angle = 9.0 degree, Matrix X/Y/
Z = 240.0 pixels /256 pixels /176 pixels, Mfg Model = Skyra, Pixel
Spacing X/Y = 1.0 mm/1.0 mm, Pulse Sequence = GR/IR, Slice
Thickness = 1.2 mm,TE = 2.98 ms,TI = 900 ms and TR = 2300 ms.
Additional MR image corrections were also applied such as
GradWarp for correction of geometric distortion caused by gra-
dient non-linearity [43] and N3 bias field correction for reducing
intensity inhomogeneity due to non-uniformities in the radio
frequency receiver coils [44] .

2.2. Subjects

The HC group contained 130 participants, with ages ranging
from 56 to 88 years (mean 74.49 ± 6.13 years), MMSE scores
ranging from 27 to 30 (mean of 29.26 ± 0.80), and a CDR score
of zero. The AD group contained 130 patients, and their ages
ranged from 57 to 91 years (mean of 75.88 ± 7.54 years). Their
MMSE and CDR scores ranged from 10 to 28 (mean of
22.33 ± 3.27), and 0.5 to 2 (mean of 0.80 ± 0.37).

3. Proposed CAD classification system

In this section, an automatic CAD system, which is based on
feature ranking, followed by optimal selection of a number of
top features using a classification error for high-performance
AD classification, is introduced. An outline of the proposed
ranking-based CAD system is illustrated in Fig. 1. First, the VBM
and DARTEL approach were employed to preprocess 3D T1-
weighted MRI data. Second, voxel-based feature extraction was
performed. Third, the extracted features were ranked based on
the score values of the respective features in the training set.
The optimal number of top ranked features was automati-
cally obtained by minimizing the classification error among the
possible number of features.These approaches resulted in high-
dimensional sMRI data of VOI in a low-dimensional space with
a discriminative subset of high-performance features based on
the training data in each fold. Fourth, to evaluate the perfor-
mance of the proposed feature-selection method, a linear SVM
classifier was employed. In addition, a data fusion technique
among different feature ranking methods was engaged to
improve the classification performance.

3.1. MRI data preprocessing

The 3D T1-weighted brain images were pre-processed using
the SPM8 package2 and VBM8 toolbox.3 Recently, several studies
have been used VBM method for detection atrophic changes
in AD [8,9,33,45–47]. In this study, DARTEL approach was em-
ployed with VBM to increase enhancement of inter-subject
registration provide precise, accurate localization of struc-
tural damage of the MRI images. DARTEL template is generated
from 550 healthy control participants (defined by default setting
of VBM8 toolbox) [48]. In the VBM8 toolbox, all the sMRI data
were bias-corrected and segmented into white matter (WM),
gray matter (GM), and cerebrospinal fluid (CSF) components.
The normalized segmented images were modulated by apply-
ing a nonlinear deformation. This allows the comparison of
absolute amounts of tissue corrected for individual differ-
ences in brain size [48].The deformation is applied to segmented
images to create an image which is in voxel-for-voxel regis-
tration with the template [49]. In the current study, we used
only GM component. Finally, the all GM components were spa-
tially smoothed with an 8 mm full-width-half-maximum
Gaussian smoothing kernel. After spatial preprocessing, the
smoothed, modulated, DARTEL-warped and normalized GM
datasets were subjected to the general linear model to detect
gray matter volume changes using voxel-wise two sample
t-test in SPM8. Age was engaged into the matrix design as a
nuisance variable. The whole brain analysis was imple-
mented using a p-value of <0.01 with correction for family-
wise error (FWE). The extent threshold was adjusted at 1400
voxels for two-sample comparisons. Regional changes in GM
volumes were detected by a voxel-based analysis of the entire
brain. The overall procedure is explained in more detail in
Ref. [25].

3.2. Feature extraction

The brain regions containing significantly decreased GM
volumes were obtained using the VBM plus DARTEL analysis
in the AD patients relative to the HCs. Based on the VBM and
DARTEL results, a 3D mask generated from atrophy regions
was modeled to identify VOIs for further processing. This
mask was applied to the GM density volumes resulting from
the VBM and DARTEL analyses to extract voxels from atrophy
regions as raw feature vectors. The subjects were randomly
divided into 10 folds, with the same number of AD and HC
subjects in each fold. In each iteration, one of the folds was
used for testing, and nine of the folds were used for training.
A VBM analysis of each training data set was performed
using a FWE corrected at p < 0.01 and extend threshold 1400
voxels to reveal regions of decreased GM volume in the
patients through a 3D mask for the MRI samples in the re-
spective training fold. In total, 10 different masks with different
number of voxels (i.e., from 59,395 to 69,170 voxels) were
defined. The respective 3D masks were used in the respective
iteration to extract features from the training and testing
data sets.

1 www.loni.ucla.edu/ADNI.

2 http://www.fil.ion.ucl.ac.uk/spm.
3 http://dbm.neuro.uni-jena.de/vbm.
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3.3. Proposed feature selection

The dimensionality of raw feature spaces, which was very high,
changed in line with the dimensionality of the 3D masks (i.e.,

from 59,395 to 69,170 voxels). It is expected that the feature
vectors span a smaller region in the high-dimensional vector
space. The aim of feature selection is to select the best fea-
tures for improving the efficiency of learning, componential
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Fig. 1 – The pipeline of the proposed ranking-based CAD system for classifying AD.
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cost and classification performance [50]. Feature selection using
feature ranking is a reasonable approach to reduce the dimen-
sionality and improve the performance, as the most
discriminative subset of features is employed as the top feature
representing the samples. Recently, several studies have used
different feature ranking methods as part of feature selec-
tion in pattern recognition field [37,38,40–42,51,52].

3.3.1. Feature ranking
Feature ranking aids to achieve knowledge of data and iden-
tify relevant features and sort the features with respect to their
relevance. On the other hand, feature ranking makes it easier
to determine the relevance of features and class variables and
to select the most informative/discriminative features, thereby
improving the performance of classifier models and speeding
up the learning process, especially when the dimensionality of
a data setis very large [53]. Let Φ = [ ]f f f M1 2, , ,… be a features

set containing M features, where the vector f x x xj j j
N
j T

= ( )1 2, , ,…

is a vector of the values of a feature, f j, N is the number of
samples, and each value xi

j of this vector shows a feature of
that sample. A feature-ranking algorithm applied to data set

Φ generates an ordered list of the features Ψ = ⎡⎣ ⎤⎦f f f M
*
,

*
, ,

*
1 2 … .

The superscript denotes the position in the ranked list of a

feature, f
*
, and the list is ordered by the reduction impor-

tance. Based on the feature ranking, we can select the top

q-ranked features f f f q Mq

*
,

*
, ,

*
1 2 …⎡

⎣
⎤
⎦ ≤ , where q can be deter-

mined by the user or adjusted experimentally [39]. In the present
work, q was automatically estimated by minimizing the classi-
fication error of the training set in each fold.

In the present work, we used the following seven feature-
ranking approaches. In each approach, the score of each feature
was computed independently and sorted based on the respec-
tive score.

1. SD: SD measures the level of dependency between the values
of a feature and the associated class labels. The SD between
feature value X and class label C can be obtained as follows
[51]:

SD P
P
P P cjji

= ( ) ( )
( ) ( )∑∑ x c

x c
xi j

i j

i

,
,

(1)

where P x ci j,( ) is the frequency count of data X with value xi
in the class cj, P xi( ) is the frequency count of data X with value
xi, and P cj( ) is the frequency count of class C with value cj.
SD is nonnegative in the range of [0, 1], with SD = 0 indicat-
ing no correlation and SD = 1 denoting that C can be inferred
once X is known. A larger SD means higher dependency
between the feature value and class labels.

2. MI: MI measures the relevance of the feature value X and
class label C by [51,54,55]:

MI P
P
P P cjji

= ( ) ( )
( ) ( )∑∑ x c

x c
xi j

i j

i

, log
,

2 (2)

MI is similar to SD. P x ci j,( ) is the frequency count of data
X with value xi in the class cj, P xi( ) is the frequency count
of data X with value xi, and P cj( ) is the frequency count of class

C with value cj. MI is nonnegative in the range of [0, 1], with
MI = 0 indicating no correlation, and MI = 1 meaning that C can
be inferred once X is known.

3. IG: IG is a measure of the dependence between the fea-
tures and class label. The IG of feature value X and class
label C is calculated as follows [56]:

IG H X H X C= ( ) − ( ) (3)

Where H X( ) and H X C( ) are the entropy of X and the entropy
of X after observing C, respectively, as follows:

H X P x P xi i
i

( ) = − ( ) ( )( )∑ log2 (4)

H X C P c P x c P x cj
j

i i
i

( ) = − ( ) ( ) ( )( )∑ ∑ j jlog2 (5)

The maximum value of IG is 1. Features with higher IG are
more relevant.

4. PCC: PCC is a measure of the relevance between the fea-
tures and class label. PCC of the feature value X and class
label C is calculated as follows [54]:

PCC
X C

X C
= ( )

( ) ( )
cov ,

var var
(6)

which in binary classification becomes:

PCC
x c

x c

i x i c
i

N

i x i c
i

N
=

−( ) −( )

−( ) −( )

=

=

∑

∑

μ μ

μ μ

1

2 2

1

(7)

where PCC is Pearson’s correlation value, and μx and μc are
the mean of all samples of X and C, respectively. PCC has a value
in the range of [−1, 1]. PCC = 0 indicates independency of X and
C, PCC = 1 denotes the highest positive correlation of them, and
PCC = −1denotes the highest negative correlation. To select the
top informative features, all the features were ranked accord-
ing to their absolute PCC values.

5. TS: The TS measures the statistical significance of the value
differences between the two classes. The t-test is per-
formed by [57]:

TS

n n

c c

c

c

c

c

= −

+

μ μ
σ σ

1 2

1
2

1

2
2

2

(8)

Where TS is the t-test value and μc1, σ c1
2 , nc1 and μc2, σ c2

2 , nc2

are the mean, variance values, and number of samples of
two classes, c1 and c2. To select the top informative features,
all the features were ranked according to their absolute
TS values.

6. FC: FC measures between-class and within-class scatter ma-
trices between two classes, as shown below:
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FC
w S w
w S w

T
B

T
W

= (9)

where SB and SW represent the determinant of the between-
class and within-class scatter matrices, respectively [58]. For
two classes c1 and c2, the between-class scatter and within-
class scatter matrixes are defined as follows:

SB c c c c
T= −( ) −( )μ μ μ μ1 2 1 2 (10)

S x x x xW i c i c
T

x c
i c i c

T

x ci i

= −( ) −( ) + −( ) −( )
∈ ∈
∑ ∑μ μ μ μ1 1 2 2

1 2

(11)

Where w SW c c= −( )−1
1 2μ μ and μci are the mean of the data in

each class.
To select the top informative features, all the features were

ranked according to their FC values.

7. GI: The GI is a measure used to quantify the ability of a
feature to distinguish between classes. The GI for a feature,
f, is as follows [56]:

GI f p i f
i

C

( ) = − ([ ]
=
∑1 2

1

(12)

In the binary classification, the maximum value of the GI
is 0.5, and features with a smaller GI are more relevant.

3.3.2. Classification error
Consider a labeled feature vector, D T= { }X, , where X p∈ℜ
(p is the dimension of the input vector) and C is the class label,
which in binary classification with two classes C ∈ −{ }1 1, . The
pair X C,{ } has a joint probability distribution, F, which is
unknown in practice. Let a classifier be trained with a set of
n-independent observations, S c cn = ( ) ( ){ }x xn n1 1, , , ,… , which

are drawn from F. Let ϕ : , ,ℜ × −{ }{ } × ℜ → −{ }p n p1 1 1 1 be a

mapping input space to target as a classification rule, which
maps Sn onto a classifier, ϕn

p: ,ℜ → −{ }1 1 [59]. The classifica-
tion error en is the probability of an erroneous classification,
which is calculated as follows [59,60]:

e P X Tn n= ( ) ≠( )ϕ Sn (13)

In practice, the classification error is unknown, and the error
must be estimated (ê ). In the present work, two different clas-
sification error estimators were used: a resubstitution error
( ê eresub= ) and across-validation error ( ê ecross= ).

3.3.2.1. Resubstitution error. Consider a classifier, ϕ , which
is trained with a set, S cn = ( ) ( ){ }x x cn n1 1, , , ,… , where n is the
number of samples. In the resubstitution error, eresub , we design
a classifier, Sn and test it on Sn to estimate the respective error,
as follows:

e
n

T xresub i n i= − ( )( )1
0ϕ (14)

where i n= 1, ,… , and v 0 is the zero-norm counting the
number of nonzero entries in v. The resubstitution estimator

is nonrandomized, and it is very fast to compute in compari-
son to other error estimators, such as the cross-validation
error estimator [61]. This estimator is always optimistically
biased.

3.3.2.2. Cross-validation error estimator. The cross-validation
error estimator is a randomized estimator obtained by ran-
domly selecting K folds. In the K-fold cross-validation error
estimator, the data are split into K folds at each step (K = 10):
one fold is used as a test (S c cm m m= ( ) ( ){ }x x1 1, , , ,… ), and the re-
maining folds are used for training (S c cn′ ′ ′= ( ) ( ){ }x xn n1 1, , , ,… ),
where m and ′n are the number of samples in the test and
training sets, respectively. The above procedure is repeated K
times by leaving a different fold as test data, which are used
to compute (estimate) the classification error. In each itera-
tion, the estimated respective error is calculated as follows:

e
m

T xK i n i= − ( )( )′
1

0φ (15)

where i m= 1, ,… . The total error was calculated using the
average of the errors in each iteration.

e
K

ecross K
i

K

=
=
∑1

1

(16)

In this paper, we used the standard k-nearest-neighbors
(k-NN) estimator to compute the classification error estima-
tion. The k-NN estimator was chosen due to its lower
computational cost relative to that of a state-of-the-art SVM
estimator.

3.3.3. Optimal number of features based on the
classification error
In addition to the feature-ranking algorithm based on the dis-
criminative performance of the features, we propose to use an
automatic approach based on classification error estimation
to determine the number of top discriminative features and,
hence, reduce the dimensionality of prospective feature vectors.
Using this approach, it is simpler to automatically determine
the q top discriminative features based on the ranked values
in the training data in each fold instead of using a fixed q. Once
the features were ranked, the number of top ranked features
iteratively increased from 1 to Γ Γ �M( ) in the respective train-
ing error estimation. M is the number of features in the
respective feature vectors in each fold, which had values from
59,395 to 69,170 voxels in our experiments. q is searched within
the first Γ dimensions, where Γ is heuristically chosen to be
1500 to reduce the computational cost. Typical q values of
between 10 and 1300 were observed in Γ . q is regarded as the
optimal number of top ranked features that minimizes the clas-
sification error in the training set. The proposed algorithm to
determine q, is given in the pseudo code shown in algorithm
1.The number of top features was iteratively incremented from
1 to Γ , using a training set of each fold to calculate the re-
spective classification error estimation values by the k-NN
estimator. Using a cross-validation process, the optimal num-
bers of top features, q, minimizing the classification error
estimation in training phase was selected for use as the
optimal dimension in the test and the training data in each
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fold. Fig. 2 shows the details of the proposed feature selec-
tion procedure.

3.4. Classifier and performance evaluation

An SVM algorithm was used to develop a classification model
to distinguish AD patients from HCs. During training, SVM seeks
an optimal class separating a hyper-plane in the maximal margin
[7,62–72]. In this work, SVM was performed using LIBSVM4 with
a linear kernel. The SVM with liner kernel has a regularization
parameter that needs to be tuned during training. In order to
tune this parameter, grid search process using inner 10-fold cross-
validation during training process was used. In the grid search,
the value of this parameter varied logarithmically from 2 5− to
220 . To achieve a reliable measurement, all the performance
results were obtained using 10-fold cross validation.

The classification results were assessed in terms of their
ACC, SEN, SPE, and AUC based on 10-fold cross-validation.These
parameters are defined as follows [18]:

ACC
TP TN

TP FP FN TN
= +( )

+ + +( )
(17)

SEN
TP

TP FN
=

+
(18)

SPE
TN

TN FP
=

+
(19)

where TP (the number of cases of AD correctly identified as
AD), TN (the number of HCs correctly identified as HCs), FN (the
number of AD patients incorrectly identified as HCs), and FP
(the number of HCs incorrectly identified as having AD) denote
the number of cases of true positive, true negative, false nega-
tive, and false positive, respectively [10]. AUC is the area under
curve in which the curve stands for receiver operating char-
acteristic (ROC). In the classification, ROC illustrates the
performance of classifier by plotting the rate of sensitivity
against (1 – specificity). The AUC provides a single scalar value
of ROC in the range of [0, 1]. The AUC is a widely used measure
of performance for classification [73].

3.5. Data fusion among different feature
ranking methods

This paper introduces a data fusion technique among differ-
ent feature ranking methods to improve the performance of
the proposed feature-ranking-based AD classification. The aim
of the data fusion technique is to integrate the data from two
or more distinct multiple sources to improve performance. The
pipeline of the proposed data fusion system combining dif-
ferent feature ranking methods is illustrated in Fig. 3. In the
scheme of proposed data fusion, the top Γ-ranked features (i.e.,

Γ = 1500 ) f f f q
*
,

*
, ,

*
1 2 …⎡

⎣
⎤
⎦ selected based on approaches, de-

scribed in section 3.3.3, from different feature ranking methods,
were combined into a single feature vector using union op-
erator. Assuming FRV FRV FRVz1 2, , ,… are feature ranked vectors
generated using different feature ranking methods, the feature
vector fusion (FVF) is then:

FVF FRV FRV FRVz= ∪ ∪ ∪[ ] ×1 2 1… θ (20)

Where θ is the vector length for FVF, z is the number of ranking
methods and Γ ≤ θ . This concatenated feature vector was then
used for post-feature ranking. In this regard, the MI based
feature ranking was used, because of its better performance
in comparison to other ranking methods. The ranked feature
vector fusion is followed by the determination of resubstitution
and cross-validation error estimators to select the top fea-
tures that minimize the error in the all ranked feature vector
fusion set.4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

Fig. 2 – Detailed illustration of the proposed feature selection approach.
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4. Experimental results and discussion

In this section, the experimental results obtained through the
preprocessing phase using VBM plus DARTEL analysis on 3D
T1weighted MR Imaging are considered, as an indicator dis-
closing significance of decreased gray matter volumes in ADs
contributing to VOI. The experimental data consisted of 260
samples from an ADNI data set. A 10-fold cross-validation was
employed throughout the performance analysis, with 234 (90%)
samples in the training sample and 26 (10%) samples in the
testing processes in each iteration.The performance of the clas-
sification is reported for the following cases: (1) the performance
of raw feature vectors directly extracted from atrophy regions
using the VBM; (2) the performance of the proposed feature-
ranking technique using the optimal number of top features
based on the classification error; and (3) the performance of
the proposed data fusion technique among different feature
ranking methods. The ACC (%), SEN (%), SPE (%), and AUC per-
formance metrics were used for the performance assessment.

4.1. VBM of GM analysis in AD versus HC

Generally, VBM plus DARTEL of GM analysis specified signifi-
cant GM atrophy in the right/left hippocampus, right inferior
parietal lobe, and right anterior cingulate in the ADs com-
pared to the HCs through 10-fold cross validation. For an
example, comparison of gray matter volume among 117 ADs
and 117 HCs in fold 1 training is illustrated in Fig. 4. The voxel
locations of these significant regions were segmented as a 3D
mask in each fold. This mask was employed to the gray matter
density volume results from the segmentation step in the MRI
data pre-processing to extract voxel values from atrophy regions
as raw feature vectors.

4.2. Performance of raw feature vectors

The complete MRI data set consisted of 130 AD and 130 HC
samples. The ACC, SEN, SPE, and AUC obtained in the 10-fold
cross validation using a linear SVM classifier on raw feature
vectors are presented in Table 1.

4.3. Performance of the proposed feature-selection
method using feature ranking and classification error

As introduced in Section 3.3.3, the proposed feature-selection
technique was evaluated by using seven different feature-
ranking methods (i.e., SD, MI, IG, PCC, TS, FC, and GI), followed
by two different classification errors (resubstitution and cross-
validation error) to determine the optimal number of top
features. The accuracy of the proposed feature-selection tech-
nique depends on the size of k in k-NN estimator. In order to
determine the appropriate k value, a group of experiments were
performed. Fig. 5 shows the accuracy rates of the different
feature-ranking methods followed by two different classifica-
tion errors with k = 1–10. Each point represents the mean of
10-fold cross validation. As Fig. 5 shows, the maximum accu-
racy is yielded with k = 3 for the most feature-ranking methods
followed by two classification errors, and thus, k-NN estima-
tor with k = 3 was employed to compute the classification error
estimation. All of the scores for seven different feature-
ranking methods (i.e., SD, MI, IG, PCC, TS, FC, and GI) in the
training set from fold 1 are plotted in Fig. 6(a–g). Fig. 7 shows
the improvement in the ACC obtained by using progressive in-
clusion of the ranked features in the feature vectors from fold
1. A logarithmic scale was used to cover the entire feature space.
This performance is reported for fold 1 after the MI feature
ranking.The ACC was 80.76% and 92.30% on raw feature vectors
and top 1500 ranked features after the MI feature ranking. The
ACC performance improved with an increased number of
ranked features, up to 96.15%. The performance level corre-
sponded to the number of top ranked features, 479, which

Train Dataset

Feature ranking 1

Feature ranking 2

Feature ranking 7

MI Feature ranking Classification error
(using kNN estimator) Select the top featuresU.

.

.

.

.

.

1FRV

2FRV

7FRV

FVF

Fig. 3 – The pipeline of the proposed data fusion system combining different feature ranking methods.

Fig. 4 – Brain regions with significant atrophy in gray
matter volume in the 117 ADs compared to 117 HCs in fold
1 [25].

Table 1 – Raw feature vectors performance of atrophy
clusters using 10 fold cross validation.

ACC (%) SEN (%) SPE (%) AU C

83.58 82.04 85.12 0.921

Note: ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under
curve.
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Fig. 5 – Classification accuracy of the seven feature-ranking methods, followed by two classification errors with different k.
(a) SD, (b) MI, (c) IG, (d) PCC, (e) TS, (f) FC and (g) GI.
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Fig. 6 – The scores for the respective ranked features with the seven different feature-ranking methods in the fold 1
training. (a) SD, (b) MI, (c) IG, (d) PCC, (e) TS, (f) FC and (g) GI.
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minimized the cross-validation error. The number of fea-
tures that minimized the resubstitution error was 864, with an
ACC performance of 92.30%. Table 2 presents the optimal
number of top ranked features with different feature-ranking
methods followed by two different classification errors in the

training set from fold 1. Generally, the most selected top ranked
features belong the to right and left hippocampus regions.
Table 3 shows the overall performances of the proposed feature-
selection method. To evaluate the overall performance of the
different feature-ranking methods, followed by two different
classification errors, the ROC curve of the classifiers are shown
in Fig. 8(a–g). To draw the ROC Curves, 260 data points (i.e., 260
subjects) were used. The threshold value was set to zero for
SVM classifier. The results clearly show the performance im-
provement provided by the proposed feature-selection method.
Among the seven different feature-ranking methods, in general,
the MI generated the highest performance for both classifi-
cation errors to determine the optimal size of the feature
vectors. Regarding the classification errors, the ecross-based ap-
proach gives a higher performance than the eresub-based
method. The superior performance of the ecross-based ap-
proach is attributed to the randomization in the cross validation,
with the ecross-based approach reducing the bias, which is the
main problem of the eresub-based method. Among the alterna-
tive methods tested, the results indicate that the MI feature
ranking gives the highest or equal performance in terms of the
ACC (%), SEN (%), SPE (%), and AUC, when compared with the
other seven ranking methods.

Fig. 7 – Accuracy (%) by different numbers of top ranked features selected using MI ranking in fold 1.

Table 2 – The optimal number of top ranked features of
the proposed feature selection method in the training
set from fold 1.

Resubstitution
error (eresub )

Cross validation
error (ecross)

SD 365 10
MI 864 479
IG 121 1269
PCC 1151 1286
TS 1151 1286
FC 1151 1286
GI 30 731

Note: SD, statistical dependency; MI, mutual information; IG, infor-
mation gain; PCC, Pearson’s correlation coefficient; TS, t-test score;
FC, Fisher criterion; GI, Gini index.

Table 3 – Performance results of the proposed feature selection method.

Resubstitution error (eresub ) Cross validation error (ecross)

ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%) AUC

SD 86.92 83.07 90.76 0.943 89.61 88.46 90.76 0.957
MI 88.84 86.92 90.76 0.942 91.53 90.00 93.07 0.958
IG 88.07 87.69 88.46 0.949 88.07 86.92 89.23 0.945
PCC 86.15 86.92 85.38 0.949 89.23 91.53 86.92 0.946
TS 86.15 86.92 85.38 0.949 89.23 91.53 86.92 0.946
FC 86.15 86.92 85.38 0.949 89.23 91.53 86.92 0.946
GI 86.15 85.38 86.92 0.936 87.30 86.14 88.45 0.939

Note: For each column, the maximum value is specified in bold. ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under curve; SD,
statistical dependency; MI, mutual information; IG, information gain; PCC, Pearson’s correlation coefficient; TS, t-test score; FC, Fisher crite-
rion; GI, Gini index.
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Fig. 8 – ROC curve of different feature-ranking methods, followed by two different classification errors. (a) SD, (b) MI, (c) IG,
(d) PCC, (e) TS, (f) FC, (g) GI, and (h) proposed raking fusion.
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4.4. Performance of proposed data fusion among different
feature ranking methods

As proposed in section 3.5, the top Γ-ranked features (i.e.,
Γ = 1500 ) from different statistical feature ranking methods
were combined into a single feature vector using a union op-
erator. For example, the length of this concatenated feature
vector was 2584 in fold 1 training. This concatenated feature
vector was then used for post-feature ranking using MI-
based feature ranking method, because of its better performance
in comparison to other ranking methods (see Table 3). The
ranked feature vector fusion was followed by the determina-
tion of resubstitution and cross-validation error estimators to
select the top features that minimize the error in the all ranked
feature vector fusion set. The number of top ranked features
that minimized the resubstitution and cross-validation errors
were 864 and 1920, respectively, in fold 1 training. The perfor-
mance improvement aided by proposed data fusion of seven
different feature ranking methods is shown in Table 4.The per-
formance of the ecross-based approach is always higher than
the performance of the eresub-based method. Fig. 8(h) shows the
ROC curve related to proposed ranking fusion method.

4.5. Discussion

The present study investigated the feature ranking and clas-
sification errors as part of a novel feature-selection method to
design an automatic CAD system for high-dimensional pattern
classification in AD. In the proposed system, we evaluated seven
feature ranking approaches to rank the features with respect
to their statistical relevance. In addition, we proposed an au-
tomatic criterion to select the subset of top ranked features
based on classification error in the training part. In this context,
resubstitution and cross-validation error estimators were
employed to identify the number of ranked features. By in-
vestigating Table 1 and Table 3, it is clear that the proposed
feature selection method significantly improved the perfor-
mance with respect to raw feature vectors. For example, feature
selection using MI ranking and cross-validation error estima-
tor provided 8% improvement in accuracy in comparison to raw
feature vectors. Many researchers studied Random Forest as
an alternative feature selection method in machine learning,
because of its relatively good accuracy and robustness [74–76].
Otherwise, using Random Forest suffers from bias toward fea-
tures with many categories and with correlated features, more
informative features can end up with low scores [77]. In ad-
dition, several studies investigated high-dimensional pattern

classification approach in a number of neuroimaging studies
[25,78–80]. For example in Ref. [80], the authors presented an
advanced quantitative pattern analysis and classification of
brain atrophy in MCI and AD patients. In Ref. [79] the authors
introduced a method based on Support Vector Machine-
Recursive Feature Elimination (SVM-RFE) technique for feature
ranking and they used SVM classifier for classification. Data
used in the present study were the same as the one de-
scribed in our previous study [25], including pre-processing steps
and feature extraction. In Ref. [25], we introduced a novel sta-
tistical feature selection method based on the probability
distribution function (PDF) of the VOI. In more detail, PDF was
introduced to generate statistical pattern of the VOI repre-
senting the entire sMRI. Using the proposed PDF-based method,
we obtained 89.65% accuracy with linear SVM. In the present
study, instead of generation of the statistical pattern of the VOI,
we introduced an automatic statistical feature selection method
based on the feature ranking and the classification error of the
VOI, which can be considered a lower-dimensional feature
vector representation of sMRI.The dimensionality of the feature
vector can be adjusted by minimizing the classification error
in the training data-set.The proposed feature selection method
not only selects the top discriminative features but also reduces
the dimensionality of the input vectors to feature vectors. In
one of our previous studies [81], we introduced a feature se-
lection approach based on t-test feature ranking and Fisher
Criterion (FC) for high-dimensional pattern recognition in AD
detection. In Ref. [81], the number of top features was deter-
mined by using FC, which maximizes the class separation
between AD and HC. In this study, instead of using FC, we
propose to use classification error as stopping criterion to de-
termine the optimal number of top ranked features. We use
the method which is presented in Ref. [81] on the current
dataset. Table 5 presents a comparison of the classification
results based on seven feature-ranking methods (i.e., SD, MI,
IG, PCC,TS, FC, and GI) and FC as stopping. As shown in Tables 3
and 5, the ACC performance of MI feature ranking is higher
than the other ranking methods for all of the three different
stopping criteria. Recently, MI feature selection approach has
been widely used for feature selection in pattern recognition

Table 4 – Performance of proposed data fusion
technique among feature ranking methods.

Resubstitution
error (eresub )

Cross validation
error (ecross)

ACC
(%)

SEN
(%)

SPE
(%)

AUC ACC
(%)

SEN
(%)

SPE
(%)

AUC

88.84 86.92 90.76 0.942 92.48 91.07 93.89 0.963

Note: For each column, the maximum value is specified in bold. ACC,
accuracy; SEN, sensitivity; SPE, specificity; AUC, area under curve.

Table 5 – Comparison of classification performance
using seven different feature ranking methods and FC
as stopping criterion.

Method Stopping
criteria

ACC (%) SEN (%) SPE (%) AUC

SD FC 87.30 86.92 87.69 0.952
MI FC 88.07 86.92 89.23 0.953
IG FC 86.53 83.07 90.00 0.936
PCC FC 86.92 85.38 88.46 0.940
TS FC 86.92 85.38 88.46 0.940
FC FC 86.92 85.38 88.46 0.940
GI FC 86.92 85.38 88.46 0.940

Note: For each column, the maximum value is specified in bold. ACC,
accuracy; SEN, sensitivity; SPE, specificity; AUC, area under curve;
SD, statistical dependency; MI, mutual information; IG, informa-
tion gain; PCC, Pearson’s correlation coefficient; TS, t-test score; FC,
Fisher criterion; GI, Gini index; eresub , resubstitution error; ecross , cross
validation error.
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studies [82,83]. In addition, regarding the stopping criteria, ecross
shows better performance in comparison to the other stop-
ping criteria such as eresub and FC among the alternative ranking
methods. Regarding the stopping criteria, classification error
is based not only to select the most discriminative/informative
features, but also to minimize the training error. Minimizing
training error corresponds to maximizing training accuracy and
maximum level of learning in the classification process. As an
example, Table 6 shows the training accuracy based on MI-
based feature ranking and three different stopping criteria using
linear SVM. As shown in Table 6, it is clear that training ac-
curacy of the ecross-based approach is better than eresub and FC.

Finally, we proposed a data fusion technique among the dif-
ferent feature ranking methods and obtained 92.48% accuracy
with linear SVM. As part of future studies on AD classifica-
tion, we suggest considering feature ranking-based feature
selection for high-dimensional pattern classification such as
the deformation-based analysis. Another priority for future
studies is to use other registration methods as described in Ref.
[84]. These methods could further be used to evaluate the ac-
curacy of inter-subject registration in GM volume changes in
patients with AD.

4.6. Performance comparison to other methods

Recently, several studies have reported classification results to
distinguish AD patients and HCs based on MRI and ADNI
dataset. Aguilar et al. [5] employed the FreeSurfer software to
compute cortical thickness and volumetric measures. Based
on an artificial neural network classifier and MRI data, they
achieved an ACC of 84.9% and an ACC of 88.8% using an SVM
classifier and a combination of MRI data with educational and
demographic data. Querbes et al. [85] reported an ACC of 85%

using a cortical thickness feature from MRI data. Khedner
et al. [10] achieved an ACC of 88.49% by combining GM and
white matter modalities in MRI data. Cuingnet et al. [86]
tested 10 methods. They presented an SEN of 81% and an SPE
of 95% as the best performances. Zhang et al. [3] used a
multimodal classification of AD based on a combination of
MRI, CSF, and PET data. They reported an ACC of 86.2% in the
classification of AD/HC using the MRI data. By combining the
MRI, CSF, and PET results, they achieved a high ACC of 93.2%.
Westman et al. [6] reported an ACC of 87% using MRI data
and increased the ACC to 91.8% by combining the MRI data
with CSF measures. Beheshti and Demirel [25] employed a
PDF-based approach using MRI data and reported an ACC of
89.65%. A comparison of the classification performance
using the different methods and MRI data is provided in
Table 7. The results show that the performance of the pro-
posed feature-selection method using only MRI data is higher
or well comparable to that of other methods reported in the
literature.

5. Conclusion

This paper proposed an automatic CAD system for the clas-
sification of AD based on seven feature-ranking methods (i.e.,
SD, MI, IG, PCC, TS, FC, and GI) and classification errors (i.e.,
resubstitution and cross-validation errors). The optimal size of
the selected features was determined by classification error es-
timation, which minimized the classification error in the
training phase.This approach was applied to extracted raw fea-
tures obtained from GM atrophy clusters of VOIs, which were
determined using a VBM analysis. An SVM classifier was used
for the classification of the extracted feature vectors after the
feature selection. A performance improvement was also pro-
posed by applying data fusion among the different feature
ranking basedmethods. The performance of the proposed
system was evaluated with 10-fold cross validation using an
ADNI data set made up of 260 subjects (130 AD patients and
130 HCs).The results clearly showed that the proposed feature-
selection method was a reliable technique for high-dimensional
data. The experimental results showed that the performance
of the proposed approach using only MRI data was higher or
comparable to that of alternative methods reported in the
literature.

Table 6 – Training accuracy base on MI feature ranking
and three different stopping criteria.

Stopping
criteria

ACC (%) SEN (%) SPE (%) AUC

FC 90.29 88.71 91.88 0.957
eresub 92.05 90.68 93.41 0.962
ecross 92.43 91.53 93.33 0.968

Note: For each column, the maximum value is specified in bold. ACC,
accuracy; SEN, sensitivity; SPE, specificity; AUC, area under curve;
SD, statistical dependency; FC, Fisher criterion; eresub , resubstitution
error; ecross , cross validation error.

Table 7 – Supervised classification results of Alzheimer’s disease and healthy control subjects based on MRI from ADNI
data-set.

Author Imaging modality AD/HC Validation method ACC (%) SEN (%) SPE (%) AUC

Aguilar et al. [5] MRI 116/110 10 Fold 84.90 80.20 90.00 0.880
Querbes et al. [85] MRI 130/130 10 Fold 85.00 – – –
Khedher et al. [10] MRI 188/229 10 Fold 88.49 85.11 91.27 –
Cuingnet et al. [86]a MRI 162/137 2 Fold – 81.00 95.00 –
Zhang et al. [3] MRI 51/52 10 Fold 86.20 86.00 86.30 -
Westman et al. [6] MRI 96/111 10 Fold 87.00 83.30 90.10 0.930
Beheshti and Demirel [25] MRI 130/130 10 Fold 89.65 87.73 91.57 0.953
Proposed method MRI 130/130 10 Fold 92.48 91.07 93.89 0.963

a This paper compares ten methods and the best performance is presented here.
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